Diesel Specialists Reading


Diesel Specialists Reading

Diesel Specialists Reading we are diesel repair specialists based in Reading and we have over 25 years experience fixing and repairing diesel engines at our workshops based in Reading Berkshire

Is your vehicle suffering from poor running, have you noticed a increase in fuel consumption, is it difficult to start first thing in the morning , bring your vehicle to us to have your symptoms diagnosed and fixed at a reasonable cost, we are the diesel specialists reading have many years experience fixing and repairing diesel engines promptly and efficiently at very good rates indeed.

 

Diesel Repair specialists reading

We provide a range of equipment featuring:

  • Fuel Injection Pumps
  • Injectors
  • Lift Pumps
  • Fuel Filtration Equipment
  • Diesel Fuel Treatments

In association with black code, we offer a supply only or supply and install facility for diesel engine tuning kits and engine remap to improve performance, fuel economy and safety aspects.

Most cars and vans with electronic diesel injection systems can benefit from the device. Full technical help and advice is provided together with testimonials from satisfied customers.

Our Services

  • Diesel Engine Diagnostics
  • Diesel Fuel Injection Repairs
  • Common Rail Technology
  • Engine Tuning and Remapping
  • Auto Electrical Repairs
  • Vehicle Air Conditioning
  • Independant Heating Systems

Diesel specialists Reading

 

Diesel engines have high efficiency, durability, and reliability together with their low-operating cost and have been the first choice of the public’s purchase over petrol engines for some time now and back in the days of Tony Blair’s labour government they actually encouraged the public to purchase diesel cars. These important features make them the most preferred engines especially for heavy-duty vehicles. The interest in diesel engines has risen substantially day by day. In addition to the widespread use of these engines with many advantages, they play an important role in environmental pollution problems worldwide. Diesel engines are considered as one of the largest contributors to environmental pollution caused by exhaust emissions, and they are responsible for several health problems as well. Many policies have been imposed worldwide in recent years to reduce negative effects of diesel engine emissions on human health and environment. Many researches have been carried out on both diesel exhaust pollutant emissions and aftertreatment emission control technologies. In this paper, the emissions from diesel engines and their control systems are reviewed. The four main pollutant emissions from diesel engines (carbon monoxide-CO, hydrocarbons-HC, particulate matter-PM and nitrogen oxides-NOx) and control systems for these emissions (diesel oxidation catalyst, diesel particulate filter and selective catalytic reduction) are discussed. Each type of emissions and control systems is comprehensively examined. At the same time, the legal restrictions on exhaust-gas emissions around the world and the effects of exhaust-gas emissions on human health and environment are explained in this study.

The introduction

Climate change is being counted as a global environmental threat caused by people. It is seen as the second most serious issue that the world faces and has brought about results that affect life adversely (European Commission 2011). The major ones of these effects are average 0.8 °C global warming above pre-industrial levels, 0.09 °C warming and acidifying of ocean since 1950s, 3.2 cm sea-levels rising per decade, an exceptional number of extreme heat waves in last decade, and drought affecting food crop growing areas (Levitus et al. 2012; Meyssignac and Cazenave 2012; McKechnie and Wolf 2010; Li et al. 2009; Heyder et al. 2011; Dai 2011). Unless the current mitigation, commitments, and pledges are fully implemented, the negative effects of climate change will go on. It is expected that a warming of 4 °C and sea-level rise of 0.5–1 m can occur as early as 2060s (Huddleston 2012).

The greenhouse effect is a natural process that plays a major role in shaping the earth’s climate. Human activities, especially burning fossil fuels, have contributed to the enhancement of the natural greenhouse effect. This enhanced greenhouse effect stems from an increase in the atmospheric concentrations called greenhouse gases (Jain 1993; Saxena 2009). Greenhouse gases in the atmosphere lead to climate change. The major greenhouse gases emitted into the atmosphere through human activities are carbon dioxide, methane, nitrous oxide, and fluorinated gases (hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride

Carbon dioxide (CO2) has the largest rate among the greenhouse gases, and it is the main reason of global warming. The global emission of carbon dioxide has reached 34 billion tons with an increase of 3 % in 2011 (Olivier et al. 2012). Throughout the world, CO2 emissions are currently about 35,000 million metric tons per year. Unless the urgent policies are put in action, CO2 emissions will be projected to rise up 41,000 million metric tons per year in 2020s. In addition to warming in climate systems, the rising of CO2 concentration in the atmosphere leads ocean acidification as a result of dissolutions (The Potsdam Institute for Climate Impact Research and Climate 2012).

The Intergovernmental Panel on Climate Change (IPCC) stated in the Synthesis Report that, “In the absence of additional climate policies, an increase of baseline global greenhouse gas emissions from human sources would have become by a range from 25 to 90 % between 2000 and 2030” (IPCC 2007). In the Fourth Assessment Report, IPCC has forecasted a global temperature rising between 1.1 and 6.4 °C, and a global sea level rising between 7 and 23 inches by 2100. According to the IPCC, global greenhouse gas emissions must be reduced to 50–85 % below year 2000 levels by 2050 to limit warming to 2–2.4 °C. To be able to reach this target, greenhouse gas emissions from all sectors must be reduced through a multi-generational effort (IPCC 2007).

Transport is a main sector which causes the environmental pollution and climate change. Emissions from transport, and especially motor vehicles, add considerably to the levels of greenhouse gases in the atmosphere (OECD 2002). Transport is the second-largest sector in producing global CO2 emissions with a range of 22 % (International Energy Agency 2012). Owing to the rapid increase of motor vehicles and very limited use of emission control technologies, transport emerges as the largest source of urban air pollution, which is an important public health problem in most cities of the developing world. Air pollution in developing countries accounts for tens of thousands of excess deaths and billions of dollars in medical costs and loses productivity every year (Faiz et al. 1996; Sivaloganathan 1998). The World Health Organization estimated that around 2.4 million people die every year due to air pollution (WHO 2007).

In today’s world, environmental protection, climate change, and air pollution have become subjects of central concern. Many agencies, organizations (EPA, OECD, IPCC, IEA, EEA, etc.) worldwide were established and have been working to prevent air pollution and climate change caused by pollutant emissions. In their works, they have reported that approximately the 20–30 % of pollutant emissions originates from transport and these emissions have an important impact upon global warming and climate change. To prevent the effects of these pollutant emissions, they have emphasized on such issues as making several legal arrangements, advancing the technological developments, creating several model structures, developing control systems, and organizing the structure of traffic (OECD 2011; EPA 2012; IEA 2012; IPCC 2007; OECD 2002; EEA 2012).

Diesel engines have extensive usage compared to gasoline engines on account of their low-operating costs, energy efficiency, high durability, and reliability. They are the power source of commercial transport, being employed in trucks, buses, trains, and ships as well as off-road industrial vehicles such as excavation machinery and mining equipment. Although they have many advantages, they have a significant impact upon environmental pollution problems worldwide. Especially, diesel exhaust gas contains higher amount of particulate matter and NOemissions that are responsible of severe environmental and health problems (Prasad and Bella 2010). Health experts have concluded that pollutants emitted by diesel engines affect human health adversely and cause acid rains, ground-level ozone, and reduce visibility. Studies have shown that exposure to diesel exhaust gas causes lung damage and respiratory problems, and there are concrete evidences that diesel emissions may cause cancer in humans (Sydbom et al. 2001; Lloyd and Cackette 2001; Whichmann 2006; Lewtas 2007; Burr and Gregory 2011).

This article presents a review on the pollutant emissions from diesel-engine vehicles and their control systems. In this context, four main pollutant emissions (CO, HC, NOx, and PM) from diesel engines are explained individually. Worldwide emission control legislation is clarified and trends in emission control systems especially for heavy-duty diesel engine vehicles are explained. Three different emission control systems are examined as diesel oxidation catalyst (DOC) to control CO, and HC emissions, diesel particulate filter (DPF) to control PM emissions and selective catalytic reduction (SCR) to control NOX emissions.

If you would some advice or would like to book any of our services then please contact us via

email repairs@79.170.40.182 or you can telephone us on 01189581198